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Abstract. Dielectric measurements have been performed on a series of samples consisting of poly-
(acrylonitrile) (PAN) mixed with the plasticizers ethylene carbonate (EC) and propylene carbonate
(PC) in various proportions. The spectra obtained show characteristic features such as a linear
ln(ω) variation, a horizontal inflection point and double minima, which are predicted within the
A4-scenario of the mode-coupling theory. We find very good agreement with the theoretical results
in the relevant frequency range. The experimental spectra are found to satisfy a scaling behaviour,
and the resulting master curves are in good agreement with the theoretical predictions.

1. Introduction

The dielectric and mechanical properties of polymers have been a topic of great interest for a
long time [1,2]. The reason for studying these materials has not only been to gain insight into the
relaxation mechanisms of the individual polymer molecules, but also to study the liquid–glass
transition, since many polymers are ideal glass formers. However, due to the complexity of the
systems studied, there has still not emerged any generally accepted theory capable of describing
all phenomena occurring in these materials. In fact, most models proposed build upon some
more or less crude assumptions. Furthermore, the analysis of experimental data is usually
performed in terms of empirical or quasi-empirical models such as the Kolrausch–Williams–
Watts (KWW) formula [3,4], the Havriliak–Negami (HN) function [5], the Vogel–Tammann–
Fulcher (VTF) equation [6–8] and other models. Even though a large class of spectra can
be successfully analysed with the KWW or HN formulae in theα- andβ-relaxation regions,
there exist spectra with a more complicated 1/f noise character [9–16], where these simple
empirical formulae do not apply.

During recent years a microscopic approach to slow relaxations in glassy systems has
been proposed. This so-called mode-coupling theory (MCT), has brought to light many
unexpected and non-trivial results, and has partly led to a completely new way in which
to analyse experimentally obtained data. In particular, it was possible to successfully analyse
the more complex spectra mentioned above [17–20] in addition to the simpler scenarios with
a singleα-peak. In the original formulation, one starts from Newton’s equations for the
motion of particles in a monatomic simple liquid of spherical molecules. Using the so-called
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Zwanzig–Mori formalism [21] an expression for the density autocorrelation functionφ(q, z)

is obtained as

φ(q, z) = −1/
[
z − �2(q)/(z + M(q, z))

]
(1)

where z is a complex frequency,q the wave-vector modulus,�(q) = q2/βmS(q) a
characteristic frequency for liquid dynamics andM(q, z) a generalized longitudinal viscosity
or memory function. Hereβ = 1/kBT and S(q) denotes the static structure factor. An
exact evaluation of this memory function is not possible, so it has to be approximated in
some way. In MCT, this is done by first observing that it is possible to split it into two
parts,M(q, z) = iν(q) + �2(q)m(q, z), where the first term describes fast, uncorrelated,
binary collision events and the second corresponds to collective events with repeated correlated
collisions. For the latter term one performs a mode-coupling approximation [22, 23] which
leads to the expression

m(q, t) =
∑

k+p=q

V (q, k, p)φ(k, t)φ(p, t) (2)

where the coupling constantsV are given in terms of the static structure factorS(q).
From these expressions, singularities will appear in a quite subtle way, due to an ergodic–

non-ergodic transition at a certain temperatureTc, characterized byφ(q, t → ∞) = f (q) > 0.
If the coupling constants,V , for a particular system are considered to be coordinates in
a parameter space, then the set of singularities will make up a hypersurface marking the
limit between liquid and ideal glassy states. The singularities are of the so-called cuspoid
type [24, 25]. Close to a singularity the above equations can be solved asymptotically.
Specifically, the factorization property

φ(q, t) = f c(q) + h(q)G(t) (3)

is found to hold in a time regiont0 � t � τα, wheret0 is a microscopic time andτα theα-
relaxation time. This time window is referred to as theβ-relaxation region. The factorf c(q) is
the value of the long-time limit ofφ(q, t) at the singularity andh(q) is an amplitude. Because
of this factorization, the complete relaxation pattern in theβ-relaxation region is described by
the functionG(t) only. This implies a universal relaxation scenario, since a similar relation
holds for any relaxation functionφXY (q, t), i.e. φXY (q, t) = f c

XY (q) + hXY (q)G(z), where
X andY represent variables with a non-zero overlap with the density. In particular, for the
dielectric functionε(z) one finds [17]

ε(z) = fε + hεzG(z). (4)

The master functionG(t) obeys the equation

−δ0

z
+ δ1G(z) + zG2(z) + (1 + δ2)LT

[
G2(t)

]
(z)

− γ3z
2G3(z) + (δ3 + γ3)LT

[
G3(t)

]
(z)

+ γ4z
3G4(z) + (δ4 + γ4)LT

[
G4(t)

]
(z) + · · ·

· · · + (−1)kγkz
k−1Gk(z) + (δk + γk)LT

[
Gk(t)

]
(z) + · · · = 0 (5)

where LT denotes the Laplace transform:

LT [G(t)] (z) = i
∫ ∞

0
G(t)eizt dt (6)

and the parametersδk andγk are given as certain integrals over the coupling constantsV (q, kp)

in equation (2). Depending on the behaviour of the coefficients in equation (5), the singularities
discussed above are classified in the following manner: at the singularity,δ0 = δ1 = 0, and if
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δ2 6= 0, anA2- or Whitney-fold singularity is encountered. If alsoδ2 = 0 butδ3 6= 0, we have
anA3- or Whitney-cusp singularity, and so on.

A large number of experimental data have been analysed in terms of anA2-singularity
[26, 27]. The functionG(z) is in this case given by a simple scaling law, and its shape
determined by two power laws. The purpose of the present paper is to study some aspects of
the higher-order scenarios whereG(t) is given by elliptic functions, yielding a more complex
relaxation pattern. In particular we will find that experimental data on PAN show some of the
characteristic features of anA4- or swallowtail singularity, and some of the intricate scaling
predictions of the theory will be verified.

1.1. The cusp scenarios

For the singularitiesAk, with k > 3, G(t) in equation (5) has the solution [28]

G(t) = ρ2f

[
ln

(
t

t1

)]
(7)

whereρ = [
2π2/3µk(k − 2)2

]1/2(k−2)
. The coefficientµk is the negative value ofδk at the

singularity. The functionf satisfies the differential equation(
df

dy

)2

= 4

(k − 2)2
f k(y) − g2f

k−2(y) − · · · − gk−1f (y) − gk (8)

wherey = ln(t/t1) and t1 is a microscopic time. Hereg` = 4δk−`/µk(k − 2)2ρ2` are
mathematical control parameters which all vanish at the singularity. We can transform
equation (7) into the frequency domain, which in leading order yields

G(ω) = − 1

ω
ρ2

{
f

[
ln

(
1

ωt1

)]
+ i

π

2
f ′

[
ln

(
1

ωt1

)]}
(9)

wheref ′(y) = df/dy. Then the dielectric functionε(ω) = ε′(ω) + iε′′(ω) is given by

ε′(ω) = fε − εcf (ln(1/ωt1)) (10a)

ε′′(ω) = −π

2
εcf

′(ln(1/ωt1)) (10b)

whereεc = hερ
2 andfε will be treated as fitting parameters. The different singularitiesAk

all exhibit their own quite distinctive signatures. In theA4-case, which is the one relevant
here, the imaginary part of the dielectric susceptibility is characterized by e.g. frequency-
independent regions, double minima, inflection points and regions linear in ln(ω), as will be
seen in figures 3, 4 and 5, later.

Equation (8) can be rewritten into an integral form and for theA4-case one obtains the
elliptic integral [18]

y =
∫ ∞

f

ds√
s4 − g2s2 − g3s − g4

. (11)

The functionf (y; g2, g3, g4) is homogeneous since

f (y; g2, g3, g4) = sf (sy; s−2g2, s
−3g3, s

−4g4) (12)

and by puttings = |g4/3|1/4 = 1/y4 the real and imaginary parts of the dielectric function can
be written as

ε′(ω) = fε − εcf (ln(1/ωt1); g2, g3, g4) = fε − c′
4f (u; ±6r1/2, ±8p1/4, ±3) (13a)

ε′′(ω) = −π

2
εcf

′(ln(1/ωt1); g2, g3, g4) = −c′′
4f

′(u; ±6r1/2, ±8p1/4, ±3) (13b)
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whereu = ln(1/ωt1)/y4, r = ∣∣g2
2/12g4

∣∣ andp = ∣∣27g4
3/4096g3

4

∣∣. Herer andp have been
defined such thatr = p = 1 corresponds to the cusp points in figure 2—see later. The scaling
parametersc′

4, c′′
4 andy4 = 1/s are predicted to have the following temperature dependence:

c′
4 ∝

∣∣∣∣T − T0

T0

∣∣∣∣1/4

(14a)

c′′
4 ∝

∣∣∣∣T − T0

T0

∣∣∣∣1/2

(14b)

1

y4
∝

∣∣∣∣T − T0

T0

∣∣∣∣1/4

(14c)

whereT0 is the location of the swallowtail singularity, i.e. the temperature whereg2, g3 andg4

all vanish. If these parameters are regarded as coordinates in a three-dimensional parameter
space, then this space will contain scaling lines where the parametersr andp are constant.
If a set of dielectric spectra yields parameter points(g2, g3, g4) which lie on such a scaling
line, it must be possible to rescale these spectra according to equations (13) so that they fall on
a common master curve. The scaling amplitudes obtained should then have the temperature
dependence given by equations (14). A consistency check of these relations can be obtained
from the extracted values ofc′

4, c
′′
4 andy4, since

s = 1

y4
=

∣∣∣g4

3

∣∣∣1/4
= 2c′′

4

πc′
4

. (15)

It is impossible to analytically evaluatef (y) from equation (8) fork = 4. Instead, we
proceeded by numerically calculating the integral in equation (11) for given values off . With
y = ln(1/ωt1) it was in this way possible to generate sets of curves forf [ln(1/ωt1)]. The
dielectric function was then easily obtained from equations (13). To fit the experimental curves
to these functions, we started by noting that by using equation (8) withk = 4, it is possible to
eliminateω from equations (13) [19], so one can expressε′′2 as a function ofε′. The relation
between these turns out to be a fourth-order polynomial and it is thus possible to use ordinary
linear least-squares fitting algorithms to find all parameters involved, i.e.fε, εc, g2, g3 andg4.

2. Experimental section

The samples were prepared by mixing 1.5 g of ethylene carbonate (EC, supplied by Fluka) with
0.1 g of propylene carbonate (PC, Aldrich Chemical Company Incorporated, UK) over a hot
plate held at 90◦C. 0.4 g of poly(acrylonitrile) (PAN, Aldrich) was then added and the mixture
was stirred at the same temperature for an hour. The glass vessel containing the mixture was
kept sealed during the preparation. Still at the same temperature, the sealing was removed so
that the PC and EC were free to evaporate. Samples were then taken from the resulting gel at
regular intervals, first every 10 minutes for the first 30 minutes and then every 5 minutes until
the gel had hardened; see table 1. The samples were all pressed between two glass plates into
films with thicknesses around 0.15 mm.

The dielectric measurements were performed with a Hewlett-Packard 4291A RF
Impedance Analyzer having a frequency range of 1 MHz to 1.8 GHz. The sample cell
was a Novocontrol BDS2100 equipped with an RF extension line from Novocontrol. The
temperature was regulated by letting water from a thermostatic bath flow through a cylindrical
metal container surrounding the sample cell. The temperature was measured with a chromel–
alumel thermocouple.
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Table 1. Preparation of PAN/EC/PC samples.

Sample No Evaporation time (min)

1 0
2 10
3 20
4 30
5 35
6 40
7 50
8 55
9 60

10 65
11 70
12 75
13 80
14 85

3. Results and discussion

Before any theoretical analysis of the data was attempted, the dc conductivity contribution to the
imaginary part of the dielectric function was subtracted. A typical plot of the dc conductivity
for one of the samples versus inverse temperature is seen in figure 1. A distinct jump in the
conductivity is detected at around 30◦C. This is probably due to the crystallization of EC.
Worth noting also is that the conductivity is fairly high (around 10−5 S cm−1).
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Figure 1. DC conductivity plotted as a function of inverse temperature.

Figure 2 shows the positions in theg2–g3–g4 parameter space of all the measured spectra.
Because of the homogeneity properties of the elliptic functionf (y), it is possible to completely
specify this three-dimensional space with the three surfaces defined by the cuts with the planes
g2 = 1, g2 = 0 andg2 = −1. The full lines are the crossover surfaces between ideal glassy
and liquid states and are the sets of allA2-singularities. The dotted part of the ‘swallowtail’
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Figure 2. A cut of theg2–g3–g4 space with the planeg2 = 1. The open circles indicate the
positions of the cusp points and the black circles are the positions of the measured spectra in this
parameter space. The crosses with numbers refer to the spectra shown in figures 3, 4 and 5.
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Figure 3. Real (a) and imaginary (b) parts of the dielectric function plotted as functions of frequency
for sample 1 at 338 K, corresponding to point 1 in figure 2. The full lines are fits to equations (10).
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Figure 4. Real (a) and imaginary (b) parts of
the dielectric function plotted as functions of
frequency for sample 2 at 297 K, corresponding
to point 2 in figure 2. The full lines are fits to
equations (10).
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Figure 5. Real (a) and imaginary (b) parts of
the dielectric function plotted as functions of
frequency for sample 4 at 294 K, corresponding
to point 3 in figure 2. The full lines are fits to
equations (10).
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corresponds to an unphysical situation. The dashed straight line, which starts at the left cusp
point, contains the set of parameter points for which the spectra exhibit a horizontal inflection
point. Two distinct sets of experimental points can be identified in this plot, one set that follows
the bifurcation surface on the left represented by the full line, and one set of points that lie on
a line parallel to and close to the dashed line of horizontal inflection points.

In figures 3, 4 and 5, the real,ε′(ω), and imaginary,ε′′(ω), parts of the dielectric function
are plotted as functions of frequency for three typical spectra taken from the sets mentioned
above. These spectra show the low-frequency wing of a peak centred around 109 Hz followed
by a broad structure with either (a) a linear part in ln(ω) (corresponding to the cross labelled
‘1’ in figure 2 and the spectra of which are shown in figure 3), (b) a plateau followed by a
minimum (corresponding to the cross with label ‘2’ in figure 2 and the spectra in figure 4) or
(c) the tendency of a double minimum and a maximum in between (labelled ‘3’ in figure 2
and the spectra in figure 5). For lower frequencies,ε′′(ω) starts to increase and eventually we
expect anα-peak outside the experimental window. All these features are characteristic for an
A4-scenario [18], and the full lines are the best fits to theoretical curves as described above.
Clearly these spectra are not easily fitted with conventional KWW or HN models.

Ther- andp-parameters were calculated from the curve fits for all the measured spectra.
By comparing these values it was possible to distinguish a set of a few spectra for which
these parameters had approximately constant values. According to the theory it should then
be possible to rescale these spectra to fall on a master curve which can be calculated from
equations (13). This is shown in figure 6 where the real and imaginary parts of the dielectric
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Figure 6. Real (a) and imag-
inary (b) parts of the rescaled
dielectric function for five different
spectra plotted as functions ofu =
− ln(ωt1)/y4; see the text. The
full lines are the calculated master
curves with r = 0.064 andp =
0.0011. Circles: sample 2 at
323 K; squares: sample 5 at 324 K;
diamonds: sample 13 at 332 K; up-
pointing triangles: sample 5 at 319 K;
down-pointing triangles: sample 8 at
335 K; see table 1.
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function are rescaled and plotted as functions ofu = ln(1/ωt1)/y4. Clearly the experimental
curves fall on a master curve when shifted in an appropriate way, and this master curve agrees
with the theoretical curve given by the full line. On the high-frequency side or for lowu-values,
the data start to deviate from the scaling behaviour and we see some discrepancies with respect
to the theoretical master curves. There is also a systematic deviation for low frequencies or
largeu-values, but in this region the results are very sensitive to the value of the conductivity
used to subtract the low-frequency 1/ω behaviour.

From figure 6, the scaling parametersc′
4, c′′

4 and y4 can be extracted. The predicted
temperature dependences of these parameters are given by equations (14). In our case, however,
there are too few points available and the temperature range that could be investigated was too
limited, making it impossible to fully test these predictions. This is illustrated in figure 7, where
c′

4, c′′
4 and 1/y4 together with the fitting parameterg4 are plotted as functions of temperature.

The full lines are the best fits to equations (14). In these fits, the temperatureT0 was fixed
to a value of 235 K, determined from a straight-line fit ofg4 as a function of temperature
in figure 7(a). This temperature value is far below the lowest accessible temperature of
320 K.

0

2

4

6

8

240 260 280 300 320 340

T [K]

c
' 4

0

1

2

3

4

240 260 280 300 320 340

T [K]

c
'
'

4

-0.04

-0.03

-0.02

-0.01

0

240 260 280 300 320 340

T [K]

g

4

0

0.1

0.2

0.3

0.4

240 260 280 300 320 340

T [K]

1
/
y

4

a)

b)

c)

d)

Figure 7. Plots of the different scaling parameters versus temperature; see the text. (a)g4. The
full line is the best fit to a straight line, yieldingT0 = 235 K. (b) The scaling parameter 1/y4. The
full line is the best fit to the function 1/y4 = k1(T − 235)1/4. (c) The scaling parameterc′

4. The
full line is the best fit toc′

4 = k2(T − 235)1/4. (d) The scaling parameterc′′
4 where the full line is

the best fit to the equationc′′
4 = k3(T − 235)1/2.

According to the discussion in the introduction, the parameters shown in figure 7 are
interrelated according to equation (15). This prediction is tested in figure 8. The good
correspondence found between the experimentally determined scaling parametersc′

4 andc′′
4

indicates that the asymptotic expressions for bothε′ andε′′ are valid in the present case.
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Figure 8. Plots of the recalculated scaling parameters from figure 7; see the text. Circles:s = 1/y4;
squares:s = |g4/3|1/4; diamonds:s = 2c′′

4/(πc′
4).

4. Conclusions

In accordance with other studies [17–20], we find that a higher-order scenario of the MCT can
be used to explain the relaxation patterns in amorphous and semi-crystalline polymers quite
well. That the system under study is rather far away from theA4-singularity is demonstrated
by the fact that the frequency region over which there is correspondence between theory and
experiment is fairly small, in this case only around two decades. The asymptotic nature of the
MCT functions predicts that this frequency region will expand as the temperature is decreased
towards the critical temperatureT0. A crucial test of the MCT predictions is to find out whether
the scaling relations in equations (14) are fulfilled. In the present case, this was not possible
due to the limited temperature interval available. However, a set of spectra were found which
could be rescaled onto a master curve, and the shape of this agrees very well with the predicted
curve.
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